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LIMIT ANALYSIS WITH MULTIPLE LOAD PARAMETERSY

PuiLip G. HopGE, JR.1

Illinois Institute of Technology, Chicago, Illinois, U.S.A.

Abstract—Upper and lower bound theorems are established for the yield-point interaction curve of a structure
with more than one independently prescribed load parameter. The problem of finding the safety factor on the
surface loading for a structure subject to a fixed body force is considered as a special case. The theory is illustrated.
with applications to beams and circular plates.

1. INTRODUCTION

THE PrOBLEM of classical limit analysis may be stated as follows: given a rigid/plastic
structure R subject to a prescribed set of loads T on a part B of the boundary of R, con-
strained against motion on the remainder By of the boundary, and with zero body forces,
find the multiplier p such that the loads pT will just cause plastic deformation of the
structure. The well known theorems of limit analysis prove that p is unique and provide
methods for finding upper and lower bounds on p.

The restriction to zero body force is not often emphasized, but it is essential to the proofs
of the theorems. To see this fact, let us consider the case where the body force distribution F
is known and fixed (such as the weight of the structure), and it is desired to find the safety
factor on the surface load T (such as a wind load).

The standard proof of the lower bound theorem begins by defining a statically admis-
sible field as any state of stress af; which satisfies the yield condition and is in internal and
external equilibrium with loads p°T;. Therefore

U?i,j+ﬂ =0 in R
(1.1)

] 4]
oin; = p T, on Byr.

Let v; and oj; be actual velocity and stress fields for plastic deformation and apply the
principle of virtual work to both stress fields and the actual velocity field :

f Oiitij zf Fi”i*‘Pf Tw:
R R Br

(1.2)
f oféy = J‘ Fi+p° T,
R R Br

where
&y = 3o j+v;,) (1.3)

t This research was sponsored by the U.S. Office of Naval Research (DOMIIT Summary Report 1-41).
1 Professor of Mechanics.
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is the strain-rate field. Taking the difference between the two equations (1.2), we obtain

(p—p° Ty = j (o~ 05)é;; 2 0 (1.4)
R

By
where the last step follows from Drucker’s postulate [1] for a stable material -

Now, if there were no body forces, it would follow from thermodynamics that since
pf B, 1i¥: Tepresented all of the external rate of work of a real plastic deformation, the
strict inequality

I Tw, >0 (1.6)

Br
would be satisfied. Therefore, since p is positive (1.4) would lead to the desired conclusion

p° < p. (1.7

However, although the body force does not appear in (1.4) explicitly, its presence in the
problem means that (1.6) must be replaced by

f F;U;’i“pf 7;'135 > Q. (1.8)
vV Br

Therefore, no conclusion can be drawn concerning the sign of the integral in (1.4), and
hence (1.7) may be either true or false.

Consider next a different problem associated with the same situation in which p is to
be the safety factor for all loads F and T. In this case (1.4) is replaced by

(p_po)UF,-UﬁL T.»vi) >0 (19)

and (1.8) by

p“‘ Fiv;«kJA T’}v;) > 0. (1.10)
v By

Therefore, in this case (1.7) is always valid.

A more general problem, which includes both of the above as special cases is one where
we wish to prescribe safety factors on both the body force and the surface loads, with the
two factors not necessarily equal. Thus, we are concerned with pairs of numbers p,, p,
such that the loads p, T on the surface and p,F in the interior just cause plastic deformation.
In geometric terms, we seek a certain domain in a load space with coordinates p, and p,.
It turns out that this domain is a convex curve with the further property that when the
vector p = {p;, p2) is inside the curve no plastic deformation occurs, whereas when it is
outside the curve no equilibrium state exists for a perfectly plastic material.

The above problem is, in turn, a special case of a structure subjected to any number
of independently prescribed loads which was considered in [2]. In the next section we
shall develop the theory in terms of that more general problem and we shall extend the
results to include an explicit proof of two generalized limit analysis theorems.
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The significance of the theorems is illustrated in Section 3 by application to the simple
case of a cantilever beam subject to its own weight and to an end load. Then, as a less
trivial example, we consider a circular plate pierced by a central tube and subject to pressure
and to a shear force due to the tube.

2. THEORY

Let R be a given structure with boundary B, and let Q,, 4, (x = 1,...,r) be appropriate
generalized stresses and strain rates for R [3]. Let R be subject to m independently prescribed
generalized surface traction distributions T(x), to n-m generalized body force distributions
F.(x) and, possibly, to zero velocity constraints. We note that the domains on B of T, and
T, may coincide, intersect, or be disjoint. It is, of course, assumed that the total prescription
of traction and velocity is consistent with a well-posed boundary value problem.

We allow each independent force to be multiplied by a parameter p,, and consider the
structure under the total loading

T, p) = Y, pxTul(x) x on B
1

. (2.1)
F(x,p) = Z piFi(x) x on R

m+ 1

We define a statically admissible stress state as a generalized stress distribution Q2
and a load vector p° such that Qf satisfies the yield condition and is in equilibrium with
loads defined by (2.1) with p replaced by p°.

To define a kinematically admissible state we begin with any generalized velocity fields
w* on B and v* on R which satisfy continuity and boundary conditions. Next, a generalized
strain-rate field ¥ is derived from v* by the appropriate strain-rate-velocity relations,
and a stress field QF is obtained from 4} by the flow rule and yield condition. We then
define the components of a mode vector E* by

E,}"szk.w* k=1,....m
B
(2.2)
E:=ka.'v‘ k=n+1,...,n
R

and require that v* and w* be such that E* s 0. Finally, a kinematically admissible flat &
is defined in load space as the locus of vectors p* which satisfy

p* E* = f 04z 2.3)

Geometrically, p* defines an n—1 dimensioned hyperplane which is perpendicular to the
mode vector.
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We can apply the principle of virtual work to any combination of statically and kine-
matically states to obtain

- ) (2.4)
=Zpk Te.w*+ ) pd | Fp.v
1 B m+1 R
where we have used (2.1). Therefore, in view of (2.2),
| otz =p0.x 25)
R

Next, we define a yield-point state Q,, 4., p, etc. as any state which is in equilibrium and
which satisfies the flow rule with a non-trivial velocity field, i.e. such that the strict inequality

p.E>0 2.6)

is satisfied. The set of points p which are part of a yield point state will form a certain locus
in load space which we shall refer to as the yield-point interaction surface.

It is evident from our definitions that the yield-point state is both statically and kine-
matically admissible. Therefore, either or both of the states in (2.5) may be replaced by a
yield-point state. Further, Drucker’s stability postulate [1] may be applied to conclude

(Qa_ QS)q:: =20 (27)
(Q*—-Q.)4% = 0. (2.8)

In terms of the preceding definitions the two generalized theorems of limit analysis
are conveniently stated as follows in the geometrical terminology of load space.

Lower bound theorem
A statically admissible state can be associated with the load state p° if and only if p°
is on or within the yield-point interaction surface.

Upper bound theorem
A kinematically admissible state can be associated with the load state p* if and only if p*
is outside of or on the yield-point interaction surface.

To prove the lower bound theorem, we first integrate (2.7) over R and use (2.5) to obtain
p—p°).E=>0 (2.9)

As was shown in [2], (2.9) implies that the interaction surface is convex and that E is an
exterior normal to the surface at the point p.

By definition, a load point on the interaction surface I is associated with a yield state
and hence with a statically admissible state. For any other load point P, we can draw a ray
(not unique, of course) which cuts the interaction surface in two points 4 and C, Fig. 1(a).

Then
p(P) = p(A)+ A[p(C) —p(4)] (2.10)
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A

(rP

A L E(

(b)

FiG. 1. Load space for proof of theorems.
(a) Lower bound theorem.
(b) Upper bound theorem.

where, in view of the convexity of I',
0<A<1l for Pinside I’ 2.11
1 < i for P outsideT. (2.12)
For P inside I', we construct the stress state
Q2(P) = Q(A)+[QC)~ Q.(4)). (2.13)

Since all equilibrium relations are linear, Q7 is in equilibrium with the load vector p°
defined by (2.10); since Q(A4) and Q,(C) are on or within the yield curve of the material,
and since this curve is convex [1], it follows from (2.11) that QP satisfies the yield criterion.
Therefore, (2.13) defines a statically admissible state for any point P inside I'.

On the other hand, if any point P outside of I" were statically admissible, we could take
C and P as the yield-point and admissible states in (2.9) and use (2.10) to obtain

(1= {[p(C)—p(A)] . E(C)} > 0. 2.14)

Since the yield-point state A is statically admissible, (2.9) shows that the brace in (2.14) is
non-negative, and the non-uniqueness of the ray PCA can always be invoked to make it
strictly positive. Therefore (2.14) requires

A< L (2.15)
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The contradiction between (2.12) and (2.15) shows that P outside of I' is not statically
admissible and hence compiletes the proof.

To prove the upper bound theorem, we first integrate (2.8) over R and use the definition
(2.3) to obtain

(p*—p).E* > 0. (2.16)

Let p(P) be the vector to a load point P which is on or outside of the interaction surface I”
and let § be any hyperplane through P which is tangent to I'; denote a point of tangency
by A[Fig. 1(b)]. Since A is a yield-point state, it is kinematically admissible and we shall show
that p(P) is a member of the kinematically admissible flat associated with the state A4.

We first note that the definition of § allows us to write

p(P) = p(4)+& (.17

where § is a vector in the hyperplane J. Then, since E(A4) is normal to the interaction curve
at A it is normal to § and hence

E.§=0. (2.18)
Finally, we apply (2.5) to the yield-point state 4, and use (2.17) and (2.18) to obtain

L 0.4, = p(4) . E = p(P) . E. (2.19)

Therefore, it follows from (2.3) that p(P) is on the kinematically admissible flat associated
with 4.

That P cannot be inside the interaction curve follows from the same arguments that
show I' is convex and E is normal to I'. Indeed, if there exists an E* # 0 associated with P,
(2.16) shows immediately that all yield-point states p must be on one side of the plane
through P normal to E*, Fig. 1(b). Therefore P cannot be in the interior of I" and the contra-
diction completes the proof of the theorems.

3. BEAM EXAMPLE

Consider the cantilever beam in Fig. 2(a), where T and P are given positive numbers. We
define dimensionless quantities by

m= M/M, x = X/L
p=PL}2M, (= TL/M,

(3.1)

and consider the structure under loads pyt, p,p; without loss of generality we take
t = p = 1. Then, for a statically admissible state, equilibrium demands

m(x) = —pix—p3x* (3.2)
and the yield requirement is
—1<m%x)<t forall 0<x<l. (3.3)
The constraints (3.3) must always apply at the root of the beam x = 1, hence

1< pf4pd <l (3.4a.b)
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FiG. 2. Cantilever beam.

(a) Loaded beam.
(b) Mechanism.

In addition, if p? and pJ are such that the extremum of the quadratic function (3.2) falls
within the beam length, (3.3) must be satisfied at the extreme point. Thus

if0< —p? <209  then p? > 4(p?)? (3.4c)
if0> —p? >2p9 then p? < —pd> (3.4d)

Figure 3 shows the boundary of the domain defined by (3.4).
To apply the upper bound theorem, consider the family of mechanisms defined by
Fig. 2(b). The mode vector is easily obtained in the form

E* = M0%(y, y°) (3.5)
whereas it follows from (2.3) that
p* E* = M** = M6 (3.6)

o-
Therefore, (2.16) shows that

p-E* = Mo0*(p1y+p,y?) < Mo|6¥|
or, equivalently
—1 < py+pay? < 1. (3.7)

For any choice of y, 0 < y < 1, (3.7) can be used to draw a linear upper bound on the
interaction curve as illustrated in Fig. 3. However, in this simple example one may choose y
analytically to find the best upper bound. Indeed, it is evident that the restrictions are
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FiG. 3. Beam interaction curve.

exactly the same as (3.3) so that the upper and lower bounds coincide and we have found
the exact interaction curve.

In terms of this example, we can now clarify the problem posed in the Introduction
concerning fixed body force loads. If we have no body force, p, = 0, and, in view of the
symmetry of Fig. 3, the yield-point behavior is fully prescribed by the single positive
number p; = p = 1.

However, for any non-zero body force, we fix a non-zero value of p, as shown by line
AB in Fig. 3 and it now requires two numbers to specify the yield-point behavior. Therefore,



Limit analysis with multiple load parameters 669

a single number p is not properly defined in this case and it is not surprising that we were
unable to prove (1.7). If we do define two yield-point loads, say p* and p~, then it is evident
that any mechanism associated with p* will have

E, =f Tv; >0 (3.8)
Bt

whereas for p~, E, < 0. Therefore (1.4) shows that

pT<po<p” (3.9)

which is a proper generalization of (1.7) and a proper special case of the lower bound
theorem proved in the preceding section.

4. PLATE EXAMPLE

As a less trivial application, we consider an annular plate of inner and outer radii 4
and B, respectively (Fig. 4). The outer edge is welded to a fixed support and the inner edge
is welded to a rigid pipe which transmits a shear force S per unit length to the plate. In
addition, the plate is subjected to a pressure P per unit area. It is desired to determine the
plastic interaction curve between P and S.

The rotationally symmetric plate problem is fully defined by a deflection rate W,
the generalized strain-rates

K, = —d?W/dR?> K, = —dW/(RdR)

\N\\N\
NN\\N

MWARNN
AN\\\N

F16. 4. Annular plate with pipe insert.
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and the corresponding generalized stresses M, and M,, all as functions of the radial distance
R. We introduce the dimensionless quantities
r=R/A b= B/A w= W/A4
m= M/M, K= AK e = E/2 AM, 4.1)
p= PA?/6M, s = SB/M,

where M, is the fully plastic moment. We shall use primes to denote differentiation with
respect to r. Without loss of generality we may set p = s = 1 and look for the interaction
curve relating the loads p S and p, P.

A statically admissible moment state (m?, m§) must satisfy the yield condition and
equilibrium. We shall assume Tresca’s yield condition (Fig. 5):

max [m], [mg], Im? —mg|] < 1. {4.2a)

All equilibrium requirements, including the shear boundary condition at r = b will be
satisfied if m? is continuous and

(rmdY —m§ = —pQ—3p%r — b). 4.2b)

A kinematically admissible state is defined by any continuous deflection rate w* which
satisfies the boundary condition

wH(1) =0 (4.3a)
The mode vector (2.2) is given by
1
et = [&L’*{b), 6 f wH(rjr dr]. (4.3t}
h B}
The generalized strain-rate vector is
45 = (X, &) = [~ (W), —(w*)/r] {4.3c)

whence it {ollows from {2.3) that the associated kinematically admissible flat is defined by
.
p*.e* = f (mFrck + miuHr dr. (4.3d)
h

The moment state in (4.3d) must be a point (my, m¥) on the yield hexagon of Fig. 5 such that
g¥ = i*n¥ 4.3¢)

where n¥ is a unit outward normal to Fig. 5 at (m*, m¥), and A* > 0.

Any solution of (4.2) furnishes a p® which is on or within the interaction curve. Any
solution of (4.3) furnishes a p* which is on or outside of the interaction curve. Finally, if all
of (4.2) and (4.3) are satisfied, a complete solution will be defined, and the associated p
must be precisely on the interaction curve.

For small values of b and some range for p,, we might expect the complete solution
to be associated with the stress profile BCD at yield [Fig. 5(a)] which was found by Hopkins
and Prager [4] for a solid plate under uniform pressure. The moment solution according



Limit analysis with multiple load parameters 671

me me
c 8(1.1) cl r=f B
r=c reb /
r=f
D >0 /
rz1 m, D A m,
r=b,1 u<o
E F E r=b) F
(a) b

FiG. 5. Tresca yield condition.
(a) Profiles for complete solution.
(b) Profiles for lower bound.

to this hypothesis is

b<r<c:m,=1—(p,/r)(r—b)*(r+2b)—(p,/r)(r—b)

c<r<l:m = —1+logr+3p,(1+2b*logr—r¥)—p,logr “9
where p, and p, are given in terms of the parameter ¢ by
p1 = [(c3+2b% log c+3c(1—c?)—(c—b)* (c+2b))/d
p2 = (blogc+c—b)/d 4.3)

d = (c—b)[(ct+ch+b?)logc+3(1—c?)].

Curve CHABJ'C' in Fig. 6 shows the curve (4.5). Since the solution of this problem is
obviously symmetric about the origin in load space, we have also drawn the reflection
C'H'A'BJC.

Now, the solution (4.4) and (4.5) satisfies equilibrium and the equations my = 1 or
m,—m, = 1. However, we have not yet enforced the requirement that it lie on the finite
portions of those lines as drawn in Fig. 5(a). A necessary and sufficient condition that this
requirement be met is that m, < 0 mn all b < r < 1. This requirement is easily checked
numerically by computing m, at r = b, r = ¢ and r = 1. The resulting statically admissible
portion of (4.5) is shown as AB in Fig. 6. Using the reflected portion A'B’ and the fact that
the interaction curve is convex, we have established the closed curve ABA'B’ as a lower
bound.

A velocity field based on the profile of Fig. 5(a) and satisfying (4.3a) and (e) is

b<r<c:w=C(l-logc—r/c)
4.6)
c<r<l:w= —Clogr
and the associated mode vector is

e = (1/c)[c—b—clogc,(c—b)*(c+2b)+(3/2)c(1 — c?)+ 3b%c log c). (4.7a)
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FiG. 6. Plate interaction curve, » = 0-1, ¢

In computing (4.3d) we note that w' does not satisfy the clamped condition at r = b and
r = 1, hence a finite contribution to the integral occurs at those two pomts. Thus

< i
p.e=|bwb)+ f {(C/eyr dr+f (C/rydr+w(l)
b I

{4.7b)
= C(2—logc)

where we have taken C > 0.
For any choice of ¢ equations (4.7) define a straight line which is everywhere on or outside
of the interaction curve:

gle, py, p2) = prll —log c—b/c) (2 ~log ¢}
+pa[3b7 log e+ (—c*—6h*+3—4b%/c)2] = 0. (4.8)
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Therefore, the envelope of (4.8) obtained by eliminating ¢ between (4.8) and
dg/oc = pi(b—c)+pa3b%c~c3—2b%)+c = 0 4.9)

will be an upper bound for the interaction curve. 1t is readily verified that equations {4.8)
and (4.9) are equivalent to (4.5) so- that the evelope is CABC' in Fig. 6. Therefore, using
symmetry with respect to the origin, we have constructed to upper bound CABC'A'B'.
On the basis of the profile in Fig. 5(a), then, we have both upper and lower bounds for the
entire range of p, and p,, together with part of the exact solution.

Rather than seek to extend the exact solution, we look direcily for some improved
bounds. Let us consider a profile of the form

md = m+u (4.10)
where u is a constant. The solution of equation (4.2b} is evidently
m? = A—3p3r* + (30307 +u—pY)logr. 4.11)

We take pJ to be positive for definiteness, and define r = f as the single root of m, = 0.
Then

P = u—3p3(f*-b?) (4.12)
and equation {(4.11) can be rewritten in the form
me = A—3p3(f? logrt —r?). {4.13)

We wish to eliminate the three parameters, 4, f and u, in order to obtain a relation between
29 and p3. To this end we need four equations including (4.12). Now, with reference to
Fig. 5(b), the stress point will move monotonically along one of the profiles as r increases
from b to f, and will move in the reverse direction as r increases from f to 1. Therefore, a
reasonable basis for obtaining the three additional equations is to require that the stress
points corrgsponding to r = b, f, and 1 lie on the yield curve,

There are four possibilities depending upon the sign of u and whether r = figa minimum
or maximum. It turns out that the case where m® is a maximum at f is of interest. Then
for u > 0, the three-equations are

mib) = A+3pAf*log b2 —b?) = —1
m(l) = A—3p3 = -1 (4.14)
mlf) = A+3pf* log f2—fH+u = L

Three similar equations are obtained for u < 0. Elimination of 4 and solution for f leads
to results which can be written

f=[(b*—1)log b’} (@.15)

p3 = 32—l (1—f?+f*log f3) 7. (4.16)

Fora given hole radius b, f is determined by {4.15), and it is easily verified thatbh < f < 1.
Equations (4.16) and (4.12) then give p$ and p{ as functions of the parameter u, subject to
0 < [yl < 1. Since these functions are piecewise linear, the resulting curve will consist of
linear segmen{;s in Fig. 6 connecting the points E, D and F corresponding respectively to
u=—10and L
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In view of the previous lower bound and the convexity of the interaction curve, DA is an
improved lower bound over DF and EB’ can be drawn as a lower bound. Finally, it follows
from symmetry that the lower bound now stands as ABE'D’A’'BEDA.

Improved upper bounds are obtained by considering the linear profiles shown in Fig. 7.
According to Fig. 7(a),

b<r<ce:w*=A(l—-0)

(4.17)
c<r<bwk = A(l —r)
e* = A(l —o)[1, 1 +c+c*—3b7]
(4.18)
p*.e* = [ew* () +|w*(1)—w¥(c)| +w* (1) = 2| A|.
If 4 is positive it follows from (4.18) that the straight line
pE+pEl+c+ct—3b%) = 2/(1—¢) 4.19)

()

NN

(b)

1

FiG. 7. Plate mechanisms.
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is everywhere on or outside of the interaction curve for any choice of c. Therefore, the
envelope of (4.19),

pt = —6(c?—bA)[(1+2c)(1 —c?)]
p3 = 21 +20)(1 —c?)]

is an upper bound on the ineraction curve, as shown by GHI in Fig. 6. GH is inferior to
our previous result, but HI shows an improvement over HC.
Similarly, the mechanism of Fig. 7(b) leads to

e* = —Alc — b)[1,(c — b)(c+2b)]
p*.e* = 2¢jA] {421)
p¥+{c — b){c+2b)p% = —2c/lc—b)

1l

4.20)

and the upper bound
pf = =4 —bB)(b+2)(c—b)?
p3 = 2b/[(b+2¢)(c—b)’]

as shown in 1J in Fig. 6. Finally, it follows from symmetry, that IH4BJ' I'H'A'B'JI is an
upper bound on the interaction curve.

Our purpose in preparing Fig. 6 has been to illustrate how the theorems may be used
to give easily computed bounds which give a fair approximation to the interaction curve.
Obviously more accurate bounds can be obtained by looking for more realistic stress
profiles and mechanisms and by relating them to each other.

4.22)

i
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AbcrpaT—IIpeANONATAOTCH BEPXHASL U HUXKHSS TPENCTLHLIE TEODEMbi AMS KpuBoH BlaumosedcTrus
TOYKH TEKY4eCTH Ljis cucuiemi, obnagarounx $0/ee YemM ONHHM HE3ABUCHMBIM 3a[AHHBIM napamMeTpoM
Harpysku. PaccmaTtpmBaercs sagaya onpeneienus daktopa GezomacHocTH TIOBEPXHOCTH HArpY3KH AJs

cuciieut NOABEPHKEHHOH NEHCTBUIO 3aJaHHOA cunibl, TeopHs WILIIOCTPUPYIOTCA MPMMEpPaMu Ui BANoK U
KPYTJIbIX IUIACTHHOK,



